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The most recent tendencies and breakthroughs in digital technologies 
have made it possible to implement a new model of manufacturing. By es-
tablishing a digital twin of the real environment and basing their judg-
ments on that twin, digital systems are able to monitor, optimize, and man-
age the processes that they are applied to. This concept is predicated on 
the creation of a “Digital Twin” for each individual production source that 
contributes to the overall manufacturing process. In spite of the fact that 
different real-world applications of digital twin may involve different tech-
nical and operational specifics, a significant amount of work was  put in 
over the past few years to recognize and express principal properties, in 
addition to the primary challenges involved in the practical implementa-
tion of digital twins within related industries. The purpose of this article is 
to review and analyze the fundamental principles, ideas, and technological 
solutions that comprise the Digital Twin vision for production processes. 
As a result, the objective of this review is to provide a synopsis of the state-
of-the-art regarding digital twin concepts and to analyze their most recent 
status in terms of their potential application and implementation. 

1. Introduction

"Digital twin" is a digital copy of a physical object, sys-
tem, or process that was designed for, or is now being 
used in the real world [1]. A digital representation of 
something that is either meant to exist in the actual 
world or does in fact exist in the real world is called a 
"digital twin" or "physical twin" [2]. The digital twin is 
intended to be the foundational premise for Product 
Lifecycle Management and it exists throughout the entire 
lifecycle of the physical entity it represents, including 
creation, construction, operation/support and disposal 
[3]. This has been the case since the digital twin's initial 
introduction.  Due to the granular nature of the infor-
mation, the representation of the digital twin is estab-
lished by the value-based use cases it is designed to im-
plement. It is possible for the digital twin to exist before 
there is a physical entity, and this really happens rather 
frequently. It is possible to model and simulate the full 
lifecycle of the targeted entity by making use of a digital 
twin throughout the phase of creation [4]. It is possible 
to employ the digital twin of an existing entity in real 
time and keep it frequently synchronized with the phys-
ical system it corresponds to, but this is not a require-
ment [5].  For the purpose of providing an illustration of 
a real-time digital twin, an object that is being investi-
gated, such as a wind turbine, may be supplied with a va-
riety of sensors relevant to critical aspects of its function-
ality [6]. These sensors generate information regarding 
many aspects of the performance of the physical twin [7], 
such as the exterior weather conditions, and the amount 
of energy output. After that, the info is transmitted to  
a processing system, where it is utilized on the digital 
twin.  

Despite the fact that the idea has been  conceived ear-
lier, the first operational definition of a digital twin was 
developed by NASA in 2010, as part of an effort to im-
prove the simulation of spacecraft using physical models 
[8]. Continual attempts to ensure and improve the 

quality of the product design and engineering processes 
finish in the creation of digital twins [9].  

Computer-aided drawing and design, model-based 
systems engineering, and a rigorous relationship to sig-
nal from the physical equivalent have largely replaced 
traditional methods of producing product drawings and 
engineering specifications [10]. Therefore, the main aim 
of this technical review is to provide information on con-
cept of digital twins in smart manufacturing. The various 
approaches like big data, internet of things (IOT), prod-
uct life cycle management etc. is discussed briefly in sec-
tion 2. The section 3 describes the importance of ma-
chine learning in digital twin. Section 4 shows the im-
portance of digital twin taxonomy in smart manufactur-
ing.  

2. Concept of digital twins in smart
manufacturing

2.1. Big Data 

Big data refers to a vast volume of data, whether regular 
or irregular, that complicates the operation of day-to-
day operations [11]. Better planning and decision-mak-
ing options for research are supplied as a result of thebig 
data analysis [12]. When the term “the big data” was rel-
atively new, it took a very long time to collect and store 
big information for analysis to conclude. The concept 
gained momentum in the 2000s, when industry analyst 
Doug Laney defined "Big Data" as 3V consisting of the 
“volume, velocity and variety” [13]. Big data is more con-
cerned with what to do with it than with how much in-
formation is accessible. It analyzes data from any source 
to uncover solutions that save money and time, new pro-
ject creation, optimal bids, and smart decision making 
[14] like in Figure 1. When big data is paired with ad-
vanced analytics, business-related benefits include: 

• Real-time identification of root causes of mistakes 
and issues.
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• Creating coupons for sale based on the purchase be-
havior of clients. 

• Detecting errors before they have an impact on the 
operation. 

• Recalculating the risks associated with new portfo-
lios.

Figure 1. Theoretical structure of Big data [12] 

2.2. Internet of Things (IoT) 

The applicability of the digital twin (DT) concept has be-
come easier as a result of the integration of the internet 
of things (IoT), machine learning and artificial intelli-
gence (AI) technologies into the operational models of 
cyber physical systems (CPS), which have widespread 
applications in the field of industrial engineering (Figure  

2). Persistent perception of physical processes in the vir-
tual environment and making decisions, and taking ac-
tions with the data obtained from it are seen as the main 
difficulties. Cyber physical systems are used in many ar-
eas such as manufacturing, health and consumer ser-
vices, energy systems [15]. 

Figure 2. Internet of Things (IoT) smart manufacturing [16] 
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The term "digital twin" refers to an exact digital replica 
of a physical object. As an alternative definition, a digital 
twin is an electronic representation of a physical object 
or service. The digital twin now incorporates software 
solutions, artificial intelligence, and the Internet of 
Things (Industry 4.0) [17]. The employment of sensors 
has led to a dramatic increase in the amount of data we 
can obtain from our immediate surroundings. Using sen-
sors, information about the real world is taken in and up-
loaded to a digital database [18]. A digital duplicate of a 
real-world process, good, or service is built using the 
transferred real-time data. This strategy is rapidly gain-
ing prominence as a key tool for improving engineering 
productivity and creativity in the current day. The so-
phisticated analysis, monitoring, and inference capabili-
ties of digital twin systems have been put to use by a 
wide variety of businesses [19]. Although the digital twin 
model has been around since 2002, the term came to 
light in 2010. After this date, its popularity has been in-
creasing day by day due to the many benefits it is ex-
pected to offer throughout the product life cycle. The 
concept of the digital twin is currently receiving great at-
tention and continues to be developed by the world's 
largest companies. Although the digital twin is increas-
ing its usage and prevalence day by day, it is a new con-
cept for many people and businesses. It can be said that 
this concept emerged with the evolution of the concept 
of "smart products" introduced in the early 2000s [20]. 
The digital twin can be seen as a connection between the 
real world and the virtual one. Integration of smart com-
ponents with sensors to track data like real-time status, 
operating condition or location is common in digital twin 
systems. All the information gathered by the sensors is 

sent to and stored in a cloud-based system, which is 
managed by the smart online components [21]. The in-
formation gathered here is examined using a number of 
metrics and parameters. Through this system, many pro-
cesses such as transforming your work that can be ap-
plied to the physical world, performing various tests and 
analyzes in a virtual environment become applicable 
[22]. All kinds of improvements that can be made in the 
production units can be made in the digital twin, which 
is the electronic copy of the production unit. Improve-
ment may require radical change, such as changing or 
improving processes or machines. Physical change is al-
ways difficult, time consuming and expensive. It is easy 
and less expensive to make these changes to the digital 
twin [23]. 

2.3. Product Lifecycle Management (PLM) 

With the digital twin technology, solutions that will elim-
inate many real-world difficulties have begun to be in-
troduced. It can be found in a wide range of usage exam-
ples, from fatigue in marine and wind turbines to testing 
corrosion resistance, helping to improve efficiency in 
machining [24]. Thanks to the digital twin, it has become 
possible to find and research various solutions in the 
stages of improving production processes, expanding the 
product life cycle [25] and product development [20] 
(Figure 3). Here, cost comes first and as it is known, test-
ing or re-establishing a physical environment is a costly 
process. With the creation of a digital twin with the real 
data of the physical environment in the real world, these 
solutions and operations have become very easy to real-
ize in terms of cost and applicability [20]. 

Figure 3. Product Lifecycle Management (PLM) [20] 

2.4. Continuous Acquisition and Life cycle Support 
(CALS) 

CALS technology has the potential to dramatically mini-
mize the amount of design effort. Many components of 
previously established equipment, machinery and sys-
tems are described. A single format for data transfer net-
work servers that is available for all CALS technology 

users is significantly less difficult (Figure 4) [26]. Solve 
maintenance issues, integrate goods into various types 
of systems, and it is expected that the following factors 
will lead to success in the market of complex technical 
products: the environment, adaptation to changing oper-
ating circumstances, and specialization of the design or-
ganization [27]. 
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Figure 4. Example of Continuous Acquisition and Life cycle Support (CALS) [26] 

Advances in CALS technology should result in the phe-
nomenon known as virtual emergence. Manufacturingis 
in charge of the process of developing software specifi-
cations [28]. In terms of time and space, enough techno-
logical equipment to manufacture a product may be in-
stalled between several companies and self-contained 
design studios. Among CALS-technologies' accomplish-
ments is the simplicity of deployment of sophisticated 
design solutions; it is part of a project such as a new de-
velopment [29]. The foundation of current CALS technol-
ogy is the construction of an open distributed automa-
tion design and management system in the industry. The 
fundamental issue with their design is guaranteeing ho-
mogeneity. Data description and interpretation, wher-
ever and whenever it was received a generic system that 
grows to become a global system. Design, technology, 
and operation are all intertwined. Standardization of 
documents and presentation languages is required. Then 
it is truly effective. Time and space are separated and 
various tools are used to work on a single project by dif-
ferent teams CAD/CAM/CAE systems. The same design 
document can be reused in many settings. Projects and 
integrated technical documents adapted to various man-
ufacturing situations reduce the overall cost of design 

and production by a significant amount. Besides the sys-
tem's functioning has been simplified [30]. 

3. Importance of machine learning (ML)
in digital twinning of smart manufacturing

It is possible to carry out difficult or costly transactions 
in the real world in the virtual environment and apply 
them in the real world by looking at the results. It has 
paved the way for these transactions to be done more 
easily and at lower cost by processing and interpreting 
real-time data in the virtual environment. By making 
various simulations, it will be possible to test the innova-
tions digitally before they are tried in the physical envi-
ronment. Artificial intelligence [18] and machine learn-
ing [31] are two examples of how many operations can 
be enhanced through the application of these techniques. 
Identifying issues in the digital twin before bringing 
them into the physical production space saves time and 
money. Predictions can be made with tools like machine 
learning and artificial intelligence, allowing us to provide 
not only analysis of the current situation but also fore-
casts for the future. This creates an effect that can make 
serious contributions to the costs of businesses (Figure 
5) [32,33]. 
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Figure 5. Machine Learning (ML) based manufacturing process [32] 

4. Digital twin taxonomy and its importance in
smart manufacturing

4.1. Digital twin prototype (DTP) 

In particular, performing all these processes in a digital 
environment is extremely important in terms of R&D 
costs. In this way, business processes are accelerated 
and healthier simulation results are obtained. However, 
for this process, the prototype of the product, the sensors 
and the data it produces, and the digital twin (virtual 
copy) of the product are required. Computer Aided De-
sign (CAD) software is used while preparing the virtual 
copy [34]. While performing the task of the prototype, 
analog data is taken with the help of sensors, digitized 
and applied on the virtual model. In this way, simulations 
in accordance with real operating conditions can be 
made and more reliable simulations of products devel-
oped especially for critical missions are made [35]. 

4.2. Digital twin instance (DTI) 

A DTI (formed from the DTP) is a physical asset's dop-
pelganger. Throughout the duration of a physical asset, 
the DTI remains connected to it. Typically, the DTI com-
prises data pertaining to in-use conditions as acquired 
by sensors, previous state, expected state, asset and war-
ranty information, service records, and so on. While a 
DTI begins with the baseline information from its proto-
type, the DTI is enhanced by operational data over the 
course of its existence. Throughout its life cycle, this sort 
of DT is linked to its physical counterpart. DTI was 
formed during the production process. Once a physical 
system is established, data from the actual world is 
transported to the virtual world and vice versa in order 
to monitor and forecast system behavior. These data 
may be used to determine if the system is displaying the 
expected desired behavior or not, as well as whether the 
projected unwanted scenarios have been successfully re-
moved. Because the connection between the two sys-
tems is bidirectional, any changes made in one will be 
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replicated in the other [19]. The authors refer to a collec-
tion of DTIs as Digital Twin Aggregate (DTA). 

4.3. Digital twin aggregate (DTA) 

A DTA is a collection of numerous DTIs. DTIs can be co-
located inside a single entity (for example, 100 motors in 
a single manufacturing) or across businesses. It is com-
monly understood that collective behavior does not 
equal the sum of individual conduct. Similarly, in the fu-
ture, DTAs may offer previously undiscovered and sur-
prising insights [36]. 

4.4. Digital twin environments (DTE) 

The Digital Twin Environment (DTE) is a virtual depic-
tion of the real surroundings in which the item lives. The 
DTE is the application space for DT simulation, modeling, 
and assessment for a number of reasons [37]. 

5. Conclusions

So far, it has not been determined whether or not there 
is a position that is consistent regarding the methods and 
technologies that may be utilized to execute the concepts 
of digital twins in production scenarios that take place in 
the real world. Following from what was covered previ-
ously, it appears that there are still some issues that need 
to be addressed. Despite the fact that many recently 
bought machines and plants have sensors and communi-
cation capabilities, this prevents organizations from 
planning investments on the adoption and integration of 
digital twin-based solutions. According to some re-
search, this is due to the fact that virtually all businesses 
are undertaking digital transformation right now. Given 
the immaturity of some key elements of the digital twin, 
this target appears ambitious at best. On the other hand, 
the digital twin is currently showing up in the design, 
management, and optimization of manufacturing facili-
ties and is one of the most prominent innovation trends 
in this area. The scientific community and industry ac-
tors are making significant efforts to develop standards, 
designs, methodologies, and deployable systems. This is 
evidence of the topic's acknowledged relevance and op-
timism that existing problems may be surmounted in a 
few years. 
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