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Electrical discharge machining (EDM) is a non-traditional machining 
process widely used in manufacturing to create complex geometries on 
hard-to-machine materials. The tool material used in EDM plays a crucial 
role in determining the machining performance and final surface finish of 
the workpiece. In this research, we aimed to optimize the tool selection for 
creating circular holes on SG iron (grade 450/12) using EDM. To this end, 
we employed a step-wise weight assessment ratio analysis (SWARA) 
based combined compromise solution (CoCoSo) approach to evaluate the 
performance of different tool materials under various machining 
conditions. The machining conditions considered in this study included 
peak current (I), pulse-on time (Ton), and inter-electrode gap (IEG). The 
results of our study showed that the CoCoSo approach is an effective 
method for tool selection in EDM, and it can be used to identify the optimal 
tool material and machining conditions for creating circular holes on SG 
iron. The final appraisal scores obtained from the ranking of tool materials 
indicated that copper tools scored highest (2.4767, ranking 1), followed by 
copper tungsten (2.3615, ranking 2), while brass scored lowest (1.6606, 
ranking 3). Furthermore, Spearman's rank correlations for different 
integrated MCDM techniques were performed, which demonstrated the 
efficacy of this technique. It has been demonstrated that implementing the 
SWARA-CoCoSo method can effectively optimize the EDM process with 
regard to sustainable machining practices. 

1. Introduction

Numerous non-traditional machining (NTM) technolo-
gies have developed as plausible alternatives for the cur-
rent manufacturing sectors to fulfil the demands of cre-
ating complicated form functionalities on multiple com-
plex, sophisticated engineering components [1]. These 
technologies provide great dimensional precision and 
texture polish with minimal tool wear and residual 
stress development. Various energies in their direct 
forms are used to remove work material without direct 
contact between the tool and the work material [2]. Elec-
trical discharge machining (EDM) is an unconventional 
machining method that has been developed over the past 
few decades to produce difficult-to-cut materials. It is 
also used to alter the material's surface characteristics 
through the EDM process. Conventional techniques for 
material removal, including turning, milling, shaping, 
grinding, and drilling, all involve applying pressure to 
the workpiece with a cutting tool to remove extraneous 
material in the form of chips [3]. Shear action and the 
loss of material are both produced due to the plastic de-
formation induced within the workpiece [4]. In NTM 
methodologies, instead of employing sharp cutting tools, 
the material is eliminated using one or more of the fol-
lowing forms of energy: mechanical, thermal, electrical, 

or chemical energy, or a hybrid of these. In other NTM 
procedures, the tool does not come into any kind of con-
tact with the work material at all, and the material of the 
tool does not even have to be harder than the material 
being worked on. The material that is removed from the 
surface of the workpiece using NTM procedures is done 
so in the form of fine particles [5]. This results in im-
proved surface uniformity and geometric precision. 
Welding, machining, additive manufacturing, joining, 
and other procedures have all been used at some point 
in producing tools and other components [6]. From this 
perspective, it is worth emphasizing that diverse work 
materials are required for various engineering applica-
tions, therefore it is critical to understand and examine 
materials machined using the EDM process. Despite Jo-
seph Preistly establishing the background of the EDM 
operation in 1770, it wasn't until two Soviet scientists, 
the Lazarenkos, were able to create a machining tech-
nique that was employed as the foundation for the cur-
rent EDM approach that they were successful. This pro-
cedure leverages electrical power to spark an electrical 
current between an electrode and a work material, and 
electro-discharge erosion is mainly employed to remove 
material. This electric spark generates a tremendous 
amount of heat, with temperatures ranging from 8000o 
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to 12000oC, which can only impact the workpiece sur-
face when adequately regulated and limited. The metal 
removal mechanism applies a pulsing (on/off) electrical 
charge to the work material, causing controlled erosion 
of tiny metal components from the work material via the 
electrode. Substance removal is therefore accomplished 
via the material's fast vapourization and melting.  

2. Literature review 

This section summarises the research work done in the 
last decade in the domain of EDM using different process 
parameters, responses, and MCDM/Optimization meth-
odologies on diverse work materials. Mandal et al. [7] 
utilized pulse on time (Ton), pulse off time (Toff), and 
peak current as process parameters for machining C40 
steel work material and measured the responses such as 
material removal rate (MRR), tool wear rate (TWR), and 
used the artificial neural network (ANN) in conjunction 
with NSGA-II for parametric optimization of the machin-
ing parameters. Dewangan and Biswas [8] employed 
pulse on time (Ton), working time (WT), lift time (LT), 
peak current, and inter-electrode gap (IEG) as process 
parameters for machining of the AISI P20 tool steel work 
material and measured the responses such as material 
removal rate (MRR), tool wear rate (TWR), further used 
grey relation analysis methodology for parametric opti-
mization of the machining parameters. Dewangan et al. 
[9] adopted pulse on time (Ton), working time (WT), lift 
time (LT), and peak current as process parameters for 
machining AISI P20 tool steel work material and meas-
ured the responses such as material removal rate (MRR), 
tool wear rate (TWR), and used grey fuzzy logic method-
ology for parametric optimization of the machining pa-
rameters. Golshan et al. [10] deployed the NSGA-II meth-
odologies to optimize the process parameters such as 
pulse on time, gap voltage, peak current, and percent of 
volume fraction of SiC while milling an Al/SiC composite 
and measuring the output responses such as MRR and 
surface roughness (SR). Furthermore, Jagdish and Ray 
[11] machined the AISI D2 tool steel work material using 
the Ton, I, dielectric level, and flushing pressure as pro-
cess parameters and measured the output responses 
Process time (PT), Process energy (PE), Aerosol concen-
tration (CA), Dielectric consumption (DC), and finally 
performed the parametric optimization employing grey 
relational analysis. Majumder [12]–[15] used a genetic 
algorithm, fuzzy-based particle swarm optimization 
(PSO), desirability-based particle swarm optimization, 
genetic algorithm, simulated annealing, PSO, and ANN to 
optimize the input parameters while machining various 
work materials such as mild steel and stainless steel. 
Ming et al. [16] implemented a genetic algorithm in con-
junction with a desirability function to optimize I, Ton, 
Toff, and V using MRR and SR as responses and SiC/Al 
composites as the workpiece. Moghaddam and Kolahan 
[17] adopted simulated annealing methods to optimize 
the parameters I, Ton, Toff, V, and DF in AISI 2312 hot-
worked steel and measured the output responses as RR, 
TWR, and SR. Mohanty et al. [18] utilized Vikor-index-
based optimization to optimize I, Ton, and V on the work 
material of high carbon steel while considering output 
responses MRR, TWR, SR, and radial overcut (ROC). Ku-
mar et al. [19] addressed its parametric optimization 
grey relational analysis on the D3 tool steel material by 
considering different surface roughness characteristics 

as the responses, using I, Ton Toff as the process param-
eters. Niamat et al. [20] used the desirability function 
technique to use the same process parameters as Kumar 
et al. [19] for parametric optimization on the AISI L3 tool 
steel. Sharma et al. [21] applied grey fuzzy logic tech-
niques to optimize Ton, I, and IEG on an SG iron (pearlitic 
450/12 grade) workpiece using MRR and overcut as in-
put responses. Furthermore, Kumar et al. [22] evaluated 
the machining of SG iron (pearlitic 450/12 grade) work-
pieces utilizing teaching learning-based optimization us-
ing V, I, cycle time (CT), and rotational tool speed as input 
responses. Satija et al. [23] investigated the potential of 
copper tungsten tools in identifying the most significant 
process parameters for machining, with MRR, TWR, and 
SR as output responses. Khoshaim et al. [24] explored 
the feasibility of using different tool electrode materials, 
including copper, brass, and tungsten carbide, with an 
iso-energy pulse generator, and found that brass elec-
trodes can produce larger craters on the machined sur-
face of titanium alloy specimens due to their lower melt-
ing points. Ceritbinmez et al. [25] studied the drilling and 
formation of holes using various tool materials, such as 
copper and brass electrodes, with input parameters such 
as current, pulse on time, and pulse off time, and investi-
gated output responses like MRR, TWR, etc. Several 
MCDM techniques [26], [27] have been implemented in 
various manufacturing sectors in this regard. 
In the field of electrical discharge machining (EDM), ex-
tensive research has been conducted over the past dec-
ade to optimize the process parameters and responses 
for various work materials using different metaheuristic 
and multi-criteria decision-making (MCDM) methodolo-
gies. However, most of these studies have neglected the 
crucial role of tool materials in determining the machin-
ing performance and final surface finish of the work-
piece. Therefore, there is a significant gap in the litera-
ture regarding the optimal selection of tool materials for 
EDM. In this context, this research aims to address this 
gap by focusing on the optimization of tool selection for 
creating circular holes on SG iron (grade 450/12) using 
EDM. The study employs a step-wise weight assessment 
ratio analysis (SWARA) based combined compromise so-
lution (CoCoSo) approach to evaluate the performance of 
different tool materials under various machining condi-
tions. The considered machining conditions include peak 
current (I), pulse-on time (Ton), and inter-electrode gap 
(IEG). The novelty of this research lies in the application 
of the SWARA-CoCoSo method for tool selection in EDM, 
which has not been explored in previous studies. The re-
sults of the study demonstrate that the approach is effec-
tive in identifying the optimal tool material and machin-
ing conditions for creating circular holes on SG iron. Fur-
thermore, the study highlights the importance of consid-
ering tool materials in the EDM process optimization to 
achieve sustainable machining practices. In present 
times, every sector of industry strives to produce objects 
in the most efficient manner possible while minimizing 
negative environmental impact. This optimization 
should also be applied to EDM processes, and it is for this 
reason that the authors wish to explore this work. A ho-
listic approach to producing and consuming material 
goods is essential in the current era, and this reinforces 
the relevance of the present research. The exploration of 
sustainable EDM practices not only benefits the industry 
but also aligns with the growing societal concern for sus-
tainable manufacturing practices. Hence, this research 
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will contribute to the knowledge of sustainable EDM 
practices and assist the industry in adopting more sus-
tainable processes. 

3. Methodology 

3.1. Step-wise Weight Assessment Ratio Analysis 
(SWARA) method 

Kersuliene et al. [28] devised and suggested the Step-
wise Weight Assessment Ratio Analysis (SWARA) ap-
proach. SWARA is an easy weighting method compared 
to other MCDM weight-calculating methods [29]. The 
steps involved in the criteria weight calculation by 
SWARA method are discussed below: 
Step 1: The criteria are arranged in descending order 
based on their importance.  
Step 2: The respondent expresses the relevance of crite-
ria j with respect to the preceding criterion (j-1), starting 
with the second criterion. Kersuliene et al. [28] refer to 
this Sj ratio as the relative significance of the average 
value.  
Step 3: Determination of kj: 

𝑘𝑗 = {
1, 𝑗 = 1

𝑠𝑗 + 1, 𝑗 > 1 (1) 

Step 4: Determination of qj: 

𝑞𝑗 = {
1, 𝑗 = 1

𝑘𝑗−1

𝑘𝑗
, 𝑗 > 1

 (2) 

Step 5: The following formula is used to establish the rel-
ative weights of the assessment criteria:  

𝑤𝑗 =
𝑞𝑗

∑ 𝑞𝑗
𝑛
𝑘=1

 (3) 

Where the relative weight of j-th criterion is denoted by 
wj and the number of criteria is denoted by n. 

3.2. Combined Compromised Solution (CoCoSo) 
method 

CoCoSo is one of the recent MCDM methods proposed by 
Yazdani et al. [30]. This approach successfully sorts or 
diverts alternatives because it uses simple additive 
weighting and an exponentially weighted product 
model. The procedural steps employed in the CoCoSo 
method are as follows:  
Step 1: Development of decision matrix in the first phase 
using the structure shown below:  

𝐷 = (𝑑𝑖𝑗)𝑚𝑥𝑛
= [

𝑑11 𝑑12 ⋯ 𝑑1𝑛
𝑑21 𝑑22 ⋯ 𝑑2𝑛
⋮ ⋮ ⋮ ⋮

𝑑𝑚1 𝑑𝑚2 ⋯ 𝑑𝑚𝑛

] (4) 

Where i = 1, 2, …, n and j = 1, 2, …, m 

Step 2: The initial decision matrix is normalized based 
on the compromised normalization equation [31]: 

𝑥𝑖𝑗 =
𝑑𝑖𝑗−min

𝑖
𝑑𝑖𝑗

max
𝑖

𝑑𝑖𝑗−min
𝑖

𝑑𝑖𝑗
, for benefit criteria (5) 

𝑥𝑖𝑗 =
max
𝑖

𝑑𝑖𝑗−𝑑𝑖𝑗

max
𝑖

𝑑𝑖𝑗−min
𝑖

𝑑𝑖𝑗
, for non-benifit criteria (6) 

Step 3: The weighted comparability sequence (Si) of 
each alternative and power weight of the comparability 
sequence (Pi) for each alternative is calculated utilizing 
equations (7) and (8), respectively: 

𝑆𝑖 = ∑ 𝑤𝑗𝑥𝑖𝑗
𝑛
𝑗=1  (7) 

𝑃𝑖 = ∏ (𝑥𝑖𝑗)
𝑤𝑗𝑛

𝑗=1  (8) 

Step 4: Relative weight of each alternative is calculated 
using three aggregation approaches as provided through 
equations (9)-(11): 

𝑘𝑖𝑎 =
𝑆𝑖+𝑃𝑖

∑ (𝑃𝑖+𝑆𝑖)
𝑚
𝑖=1

 (9) 

𝑘𝑖𝑏 =
𝑆𝑖

min
𝑖

𝑆𝑖
+

𝑃𝑖

min
𝑖

𝑃𝑖
 (10) 

𝑘𝑖𝑐 =
𝜆(𝑆𝐼)+(1−𝜆)(𝑃𝑖)

(𝜆max
𝑖

𝑆𝑖+(1−𝜆)max
𝑖

𝑃𝑖
 (11) 

Equation (9) exhibits the average of the weighted sum 
measure (Si) and weighted power measure (Pi), while 
equation (7) embodies a sum of Si and Pi. Equation (11) 
provides the balanced compromise of (Si) and (Pi) scores. 
In equation (11), the expert decision maker selects the 
value of λ (usually λ = 0.5). 

Step 5: The order in which the alternatives are ranked is 
determined by the value of ki which is computes using 
equation (12): 

𝑘𝑖 = (𝑘𝑖𝑎𝑘𝑖𝑏𝑘𝑖𝑐)
1

3 +
1

3
(𝑘𝑖𝑎 + 𝑘𝑖𝑏 + 𝑘𝑖𝑐) (12) 

The alternative having the higher value of ki is of higher 
significance. 

4. Experimental Details 

Experiments are being conducted using an EDM (electri-
cal discharge machining) setup to produce circular holes 
in pearlitic SG iron (grade 450/12). The process varia-
bles, such as peak current, pulse-on duration, and inter-
electrode spacing, are kept constant. The Taiwan Oscar-S 
430 EDM setup offers a travel range of [X-400 Y-300 Z-
300] mm and a precision of 0.02 mm/300 mm. Pearlitic 
SG iron was chosen as the material for this EDM operation 
due to its various beneficial properties, including good 
wear and corrosion resistance, superior castability and 
machinability, reasonable strength, low cost, and suitabil-
ity for hydraulic applications compared to steel. It also 
has a higher fluidity than steel, allowing for the creation 
of intricate shapes, and requires less heat treatment, re-
sulting in better dimensional stability compared to mal-
leable castings. This material is often used in producing 
hydraulic pump bodies, pump enclosures, pump casings, 
and pump hubs for diesel engine cooling systems. Tables 
1 and 2 show the mechanical properties of pearlitic SG 
iron (grade 450/12) and the chemical composition of 
pearlitic ductile iron, respectively.  
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Table 1. Mechanical Characteristics of Pearlitic  
SG Iron (450/12 Grade)  

Properties Measurement 
Value 

Ultimate Tensile Strength 450 N/mm2 

Yield Point Stress 310 N/mm2 
Elongation 12% 
Brinell Hardness Number 197 BHN 
Density 6.95 gm/cm2 

Wear resistance (relative) Excellent 

Table 2. Chemical Composition of Pearlitic Ductile Iron 

Element % 
Carbon (C) 3.365 
Silicon (Si) 2.393 
Manganese (Mn) 0.238 
Phosphorus (P) 0.072 
Sulphur (S) <0.150 
Chromiun (Cr) 0.007 
Molybdenum 
(Mo) 

<0.010 

Copper (Cu) 0.37 
Magnesium (Mg) 0.085 
Titanium (Ti) 0.032 
Zinc (Zn) 0.027 
Iron (Fe) 90.75 
Others 2.661 

In this experiment, an EDM machine was used to conduct 
experiments with a constant current of 32 A, pulse-on 
time of 30 µs, and inter-electrode spacing of 0.011 mm. 
The EDM machine was set up as shown in Figure 1. The 
dielectric fluid used throughout the machining process 
was Castrol SE 180 EDM fluid, which was chosen for its 
low smell, long-lasting stability, low viscosity, high flash 
point, reliable performance, and safe usage. The speci-
men size was 15 x 40 mm and the machined component 
is exhibited in Figure 2. To measure the material removal 
rate (MRR) and tool wear rate (TWR), an electronic 
weighing balance (A&D GR-202 type) was used. Surface 
roughness (SR) was measured using a Hommel Werke 
Turbo Wave V7.20 roughness tester, and coordinate 
measuring machine (CMM) software (GEOMET universal 
CMM) was used to measure the circularity error (CE) us-
ing a ZEISS O-INSPECT 442 CMM machine.  

 
Table 3. Experimental details 

 
Figure 1. Electric Discharge Machining Setup 

 
Figure 2. Machined Component 

The SWARA-CoCoSo approach for the EDM process is a 
systematic method of selecting the optimal tool 
(alternative) based on multiple criteria as illustrated in 
Figure 3. The first step in this approach is to identify the 
critical process parameters and quality characteristics 
that are essential to the EDM process. This step involves 
selecting the parameters that have a significant impact 
on the process and identifying the quality characteristics 
that need to be optimized. The second step involves 
selecting the alternatives (Cu, CuW, Brass) and criteria 
(MRR, SR, TWR, CE) that will be used to evaluate each 
alternative. The alternatives represent the different 
materials that can be used for the EDM process, while the 
criteria represent the factors that must be considered 
when selecting the optimal alternative.  

Process  
Parameters 

Tool MRR 
(mm3/min) 

SR 
(µm) 

TWR 
(mm3/min) 

CE 
(mm) 

I=32 A Cu 5.263 8.27 0.33707 0.1495 
Ton=30 µs CuW 3.0263 7.4 0.11428 0.1932 
IEG=0.011 
mm 

Brass 0.789 5.1 0.3529 0.1795 
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Each criterion must be carefully selected to ensure that 
it represents a critical factor that impacts the EDM 
process's quality and efficiency. The third step involves 
conducting experiments to evaluate each alternative's 
performance under different conditions. Feasible 
parametric settings of process parameters are chosen, 
and experimental trial runs are performed for different 
tools (alternatives) while recording the response values 
(criteria). This step is crucial in providing quantitative 
data that can be used to construct the initial decision 
matrix. In the fourth step, the initial decision matrix is 
constructed using the SWARA technique. The SWARA 
technique is a multi-criteria decision-making method 
that involves pairwise comparison of criteria to 
determine their relative importance. The weights for 
each criterion are calculated using this technique, and 
the initial decision matrix is constructed using the 
response values (criteria) obtained from the 
experimental trial runs. Finally, in the fifth step, MCDM 
methods such as CoCoSo, MABAC, and TOPSIS are used 
to select the optimal tool (alternative) based on the 
initial decision matrix and criterion weights. These 
methods use mathematical calculations to evaluate each 
alternative based on the criteria and criterion weights, 
and the optimal tool is selected based on the results 
obtained. The flowchart illustrated in Figure 3 depicts 
the entire process visually, making it easier to 
understand and implement. The SWARA-CoCoSo 
approach is a reliable and efficient method for selecting 
the best tool (alternative) for the EDM process based on 
multiple criteria, providing a scie-ntific basis for 
decision-making. 

 
Figure 3. SWARA-CoCoSo approach for the tool selection  

of EDM Process 

5. Results & Discussion 

In this part, the study of tool selection of an EDM process 
is conducted on the data obtained experimentally. MRR is 
the only beneficial criterion and SR, TWR, and CE are non-
beneficial criteria. The weights of several criteria were 
analyzed using the SWARA approach after brainstorming 
with experts and considering their essential input. The 
results are reported in Table 4. 

Table 4. Weight calculation through SWARA 

Cri-
te-
ria 

Compar-
ative Im-
portance 
of Aver-
age (sj) 

Co-
effi-

cient 
(kj) 

Recal-
culated 
Weight 

(qj) 

Relative Weight (wj) 

MRR - 1 1 0.3251 

SR 0.2 1.2 0.8333 0.2710 

TWR 0.15 1.15 0.7246 0.2356 
CE 0.4 1.4 0.5176 0.1683 

 
After calculating the criteria weights, the problem is 
solved using the CoCoSo method. Equations (5)-(11) are 
used to compute the normalized decision matrix, 
weighted comparability sequence, power weight of 
comparability sequence, and an overall score of the 
alternatives once the decision matrix is formed. The final 
rank of the alternatives is obtained according to the 
decreasing order of the values of k as shown in Table 5. 
The data provided enabled the estimation of values for 
three distinct appraisal scores, which were subsequently 
combined to generate the final appraisal scores for all 
the alternatives considered for tool selection. The 
resulting rankings in Table 5 reveal Cu as the highest-
ranked material, with the highest appraisal score, 
followed by CuW. Conversely, Brass received the lowest 
preference. A visual representation of the ranking 
positions for these alternative tool materials is provided 
in Figure 4.The ranking of the tool material selection 
problem is also verified by comparing the performance 
of the integrated SWARA-CoCoSo technique with some 
of the renowned MCDM techniques like TOPSIS and 
MABAC. The same results are shown in Table 5; it is 
evident that the copper tool remains the best alternative. 
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Table 5. Calculated Score values by CoCoSo Method And Rank Comparison
 

Tool Si Pi kia kib kic k CoCoSo MABAC TOPSIS 

Cu 0.5091 2.5277 0.3722 2.9594 1.0000 2.4767 1 1 1 

CuW 0.4726 2.5027 0.3647 2.8329 0.9238 2.3615 2 2 2 

Brass 0.3237 1.8227 0.2631 2.0000 0.6359 1.6606 3 3 3 

 
 

 

Figure 4. Ranking of tools based on their appraisal scores 

 

Figure 5. Spearman's rank correlations for different integrated 
MCDM techniques 

Furthermore, in this particular context, the study 
employed Spearman's correlation analysis, visually 
represented in Figure 4, as a statistical tool to determine 
the magnitude and direction of the relationship among 
three MCDM methods. Spearman's correlation analysis is 
a non-parametric measure of correlation that does not 
make any assumptions about the distribution of the data 
points and relies on the rank order of the data. The 
resulting correlation coefficient ranges between -1 and 
+1, where a value of -1 represents a perfect negative 
correlation, +1 represents a perfect positive correlation, 
and 0 indicates no correlation. As depicted in Figure 5, the 
correlation coefficient for the applied MCDM methods is 
+1, signifying a perfect positive correlation. 

5.1. Influence of λ value on CoCoSo Ranking 

The sensitivity analysis is performed by changing the 
values of λ. While applying the CoCoSo method, the value 
of λ is expected to be 0.5. This value of λ can vary between 
0 to 1. The assumption of λ value depends solely on the 
decision maker. It may so happen that upon changing the 
λ value, the ranking of the alternatives may change. Thus, 
to validate the stability of ranking by the given model, the 
importance of λ has been varied from 0.1 to 1, and the cor-
responding alternative ranking has been evaluated as 
shown in Figure 6. 

 
 
 
 
 

 

 

Figure 6. Sensitivity analysis of tool selection by changing the λ value 
  

0

1

2

3

4

λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 λ=1

Cu CuW Brass
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6. Conclusion 

Based on the research and analysis, it was found that the 
copper electrode has the highest MRR, followed by cop-
per tungsten and brass electrodes, respectively. Optimiz-
ing tools, EDM can significantly enhance the sustainabil-
ity and efficiency of the machining process. This can be 
achieved by selecting the appropriate tool for the task at 
hand, maintaining it properly, ensuring it is appropri-
ately balanced, and optimizing its geometry and design. 
The right tool selection can help reduce tool wear and 
prolong tool life, while proper maintenance can extend 
the tool's lifespan and reduce the need for frequent tool 
changes. Balancing the tool can minimize vibration and 
improve the accuracy and precision of the machining 
process while optimizing its geometry and design can 
enhance its performance and extend its life.  The SR has 
been found to be the minimum for brass electrodes for 
the considered material and process parameters. The SR 
for the copper electrode is the highest, and that of the 
copper tungsten electrode lies between copper and 
brass electrodes. The TWR is maximum for brass elec-
trodes and is minimum for copper tungsten electrodes. 
The value of CE is highest for copper tungsten electrodes 
and is lowest for the copper electrode. After applying the 
MCDM techniques, it has been found that the maximum 
weightage is given to MRR, followed by SR, TWR and CE. 
The copper electrode is best suited for electric discharge 
machining, and the brass tool is the worst among the 
three considered tool materials which has been identi-
fied with its appraisal scores and the derived ranking. 
Furthermore, the spearman's rank correlations for dif-
ferent integrated MCDM techniques which signified the 
perfect positive correlation between them. 

From the sensitivity analysis performed by changing the 
values of λ, no change has been observed in the ranking 
of the tools by the integrated SWARA-CoCoSo technique. 
For low-dimensional MCDM issues, the suggested ap-
proach is highly resilient since it is unaffected by changes 
in the appropriate tuning parameter value. In addition, 
when compared to other subjective criterion weighting 
methodologies, the SWARA method performs similarly. 
As a result, this integrated method may be regarded as a 
suitable tool for ranking options for real-time manufac-
turing-related situations in a group decision-making 
context, considering expert viewpoints. Thus, it can be 
concluded that copper is the best tool material for elec-
tric discharge machining of pearlitic SG iron (450/12 
grade) and that decision-makers may utilize the SWARA-
CoCoSo technique in making the best decision in any 
conflicting environment as it has proved its robustness. 
In conclusion, the integrated method proposed in this 
context is an effective tool for ranking options in real-
time manufacturing situations where group decision-
making is necessary. This method considers expert opin-
ions and other important factors such as cost, perfor-
mance, and availability, making it a comprehensive and 
valuable choice for decision-making. This method can 
lead to numerous benefits, including reduced wear on 
electrodes, lower material consumption, improved pro-
duction efficiency, cost savings, and alignment with sus-
tainable production trends. Overall, it is a suitable tool 
for optimizing tool material selection in manufacturing 
settings. 
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