Sustainable Production, Instrumentation and Engineering Sciences

Vol 4. No. 1(2025)

Michat Szalej?, Jakub Wlodarczyk?,
Tymoteusz Wenerski3, Damian Malczewski#*

1 Opole University of Technology, Opole, Poland, s101482@student.po.edu.pl,
2 Opole University of Technology, Opole, Poland, s101491@student.po.edu.pl,
3 Opole University of Technology, Opole, Poland, s101477 @student.po.edu.pl,
4 Opole University of Technology, Opole, Poland, s101169@student.po.edu.pl.

Comparison of Selected Web Frameworks in Specific Developer Use Cases

KEYWORDS

ABSTRACT

different applications, framework performance, fi-
nancial trading platforms, web-based news websites

This article discusses the results of benchmark tests that were con-
ducted to evaluate the performance of different frameworks for dif-
ferent types of applications. The tests found that Just.js is the rec-
ommended framework for real-time financial trading platforms
and web-based news websites due to its exceptional performance
on specific tests and its lightweight and easy-to-use nature. May-
minihttp is recommended for e-commerce platforms because of its
good performance on multiple query, JSON serialization and data
update tests and scalability. The article also emphasizes that the
best framework for a particular application will depend on various
factors such as the specific requirements of the application, the de-
velopment team's expertise, and available resources, so it is recom-
mended to evaluate other factors before making a decision on
which framework to use such as support and documentation, com-
patibility, security, and resource management.

1. INTRODUCTION

With each passing year, the use of web technol-
ogies by average users is growing exponentially,
leading to a high demand for performance, relia-
bility, and scalability of the systems being created.
An essential part of the toolset for creating web-
sites are Frameworks, as they speed up the devel-
opment process and shorten the time it takes, thus
helping to meet coding standards [1].

With the emergence of many programming
languages for web applications, it is difficult to re-
alize the advantage of one language in this area
over others [2]. We make an effort to realize these
issues and compare mainly used languages such as
Java, C++, C, C#, PHP, JavaScript, Rust and Python,
and their most popular and welldocumented
frameworks. For Java, the studied structures are
Spring and Helidon, for PHP Laravel and Comet,
for Python Django and Japronto, for Rust may-
minihttp and Salvo. In C#, ASP.net and BeetleX
have been checked, in JavaScript solutions are
Node.js, and Just.js. In C language Framework h2o,
and in C++ Drogon.

A framework makes web programming easier
and better organized in many ways. Firstly, frame-
works increase programming productivity be-
cause writing a piece of code that would typically

take hours and take hundreds of lines, can be done
in a matter of minutes with built-in functions. Sec-
ondly, a widely used framework has a significant
advantage in terms of security because its users
become long-term testers. If a user finds a security
problem, they can report it to the framework cre-
ators' website so that the developer team can fix it.
Thirdly, often most popular frameworks are free,
and since they help the programmer write code
faster, the final cost of application development
will be significantly lower. Fourthly, a framework
usually comes with a support team, documenta-
tion, or a large forum where users can quickly get
answers. Choosing a framework is an important
step as it will determine the speed and quality of
the final product [3].

Many users browse multiple websites at once
navigating through various sources of information,
so software limitations can easily lead to the loss of
viewers [4]. Frameworks are also good for main-
taining an application over a long period of time,
because they make it easier to understand the code
of the application that always within one technol-
ogy works in a predictable and known way to the
developers.

The main goal of this research is to help web
developers in choosing the best solution for per-

mailto:s101482@student.po.edu.pl
mailto:s101491@student.po.edu.pl
mailto:s101477@student.po.edu.pl
mailto:s101169@student.po.edu.pl

Sustainable Production, Instrumentation and Engineering Sciences

forming their work, and to compare the capabili-
ties of the standards of their native programming
language with available alternatives among other
programming languages.

2. MEASUREMENT METHODS AND
ENVIRONMENT

2.1. Measurement methods

The measurements were carried out by TechEm-
power, which is a project that conducts regular
performance and functionality tests on a variety of
web application frameworks and platforms. The
tests, known as the benchmarks, evaluate the per-
formance of different frameworks and platforms
in scenarios such as serving dynamic content, exe-
cuting database queries, and handling HTTP re-
quests. Tests use automated scripts to simulate
real-world workloads and record the performance
of the systems being tested. The results of these
tests are analysed and published in the form of
rankings and charts on the TechEmpower website.

The Framework Benchmarks project includes sev-

eral different types of tests:

* "Plaintext" tests: These tests measure the time
it takes for a framework to return a simple
"Hello, World!" message. These tests are de-
signed to measure the raw performance of the
framework and do not include any additional
processing or rendering.

* "JSON serialization" tests: These tests measure
the time it takes for a framework to serialize a
JSON object and return it to the client. These
tests are intended to measure the performance
of the framework's JSON serialization library.

» "Single query" tests: These tests measure the
time it takes for a framework to execute a sin-
gle database query and return the results to the
client. These tests are intended to measure the
performance of the framework's database inte-
gration.

* "Multiple query" tests: These tests are similar
to the single query tests, but they execute mul-
tiple queries in a single request. These tests are
intended to measure the framework's perfor-
mance when executing multiple queries in a
short time.

* "Fortunes" tests: These tests measure the time
it takes for a framework to execute a database
query, generate an HTML page from the re-
sults, and return the page to the client. These
tests are intended to measure the performance

Vol 4. No. 1(2025)

of the framework when rendering dynamic
content.

* "Updates" tests: These tests measure the time
it takes for a framework to execute a series of
database updates and return the results to the
client. These tests are intended to measure the
performance of the framework when executing
multiple updates in a short period of time.

* "Cached queries" tests: These tests are similar
to the single query tests, but they use caching
to store the results of the query in memory.
These tests are intended to measure the per-
formance of the framework's caching imple-
mentation.

2.2. Environment

The above-mentioned benchmarks are a set of
performance tests designed to evaluate the perfor-
mance of web application frameworks. These tests
are run in a variety of environments, cloud based,
and physical. Cloud environment is set on Azure
server provider. Physical benchmarks are tested
on “Citrine” server which consists of three homo-
geneous Dell R440 servers each equipped with an
Intel Xeon Gold 5120 CPU, 32 GB of memory, an
enterprise SSD and dedicated Cisco 10-gigabit
Ethernet switch. The goal of the benchmarks is to
provide a fair comparison of the performance of
different frameworks under a consistent set of
conditions, in order to help developers, choose the
best tool for their needs. By publishing the results
of these benchmark tests, divided not only on lan-
guage, but also by environment, developers can
make informed decisions about which technolo-
gies are best suited to their needs. This can help to
ensure that they are using the most appropriate
tools for their projects and can ultimately lead to
better software development practices and more
efficient and effective applications.

3. ANALYZE METHOD

In our analysis of the TechEmpower bench-
mark data, we used Matlab to create graphs and
visualizations of the results. Matlab is a powerful
and widely used software tool for data analysis,
visualization, and mathematical computation, and
it allowed us to represent the data in a clear and
concise manner. The graphs and visualizations we
created with Matlab helped to highlight trends and
patterns in the data and provided a more intuitive
way of comparing the performance and function-
ality of different web application frameworks.

Sustainable Production, Instrumentation and Engineering Sciences

Overall, the use of Matlab played a crucial role in
our analysis and presentation of the benchmark
data, helping to make the results more accessible
and easier to understand for a wide audience.
Matlab Script to analyze data is as follows:
Framework =

string(height(jsonser));

Percentage = ze-

ros([height(jsonser), 1]);

max = 0;

for i = 1:height(jsonser)
Framework(i) =
string(jsonser{i, 1});
if jsonser{i, 3} > max
max = jsonser{i, 3};
end
end

for i = 1:height(jsonser)
Percentage(i) = jsonser{i, 3} /

max * 100;

End

for i = 1:height(jsonser)
for j = 1l:height(jsonser)
if Percentage(i) < Percent-

age(J)
tmp = Percentage(i);
tmp2 = Framework(i);
Percentage(i) = Percent-

age(3);
Framework(i) = Frame-

work(J);
Percentage(j) = tmp;
Framework(j) = tmp2;

end
end

end

figure(1);

b = barh(Percent-

age);

grid on;

yticklabels(Frame-

work);

xlabel("Percentage

[%1");

box off

title("Multiple Query compara-

tion.");

b.FaceColor = "#4f5bd5";

Vol. 4. No. 1(2025)

4. COMPUTING ALGORITHMS

Each test result, except the sum up score, were
responses per second for a specific framework.
The final score was a composite result of all tests
with individual weights. Weights were determined
using TPR scoring algorithm. The algorithm is
quite simple:

1. Select 10 frameworks to cover a wide range of
test scores and languages.

2. Calculate mean RPS of selected 10 frameworks.

3. Normalize the magnitude of each means to
align with the most popular test - JSON seriali-
zation. For example, if]SON average RPS is
equal to 150,000 and Fortunes mean RPS is
equal to 10,000 - the Fortunes normalizing will

be given score of 15 (150,000/10,000 = 15).

4. Apply semi-fixed test biases listed below:

a. JSON-1.0
b. Single query - 0.75
c. 20-query-0.75
d. Fortunes-1.5
e. Updates-1.25
f. Plaintext- 0.75
5. RESULTS

In Figure 1, a comparison is made of the process of
retrieving a plaintext response from a database.
This information can be useful in understanding
the various steps and considerations involved in
accessing and retrieving data from a database. By
comparing the different approaches to getting a
plaintext response, you can gain insight into the
pros and cons of each method and determine the
most appropriate solution for your needs.

Plaintext response comparation.

may-minihttp
just.js
drogon
asp.net (core)
h2o

salvo

node.js
helidon
comet

spring (boot)
django
laravel
BeetleX

0 20 40 60 80 100
Percentage [%]

Figure 1. Comparison of getting a plaintext response in
relation to best result in the collection

This information can be helpful for developers
working with databases and looking to optimize
the performance and efficiency of their data re-
trieval processes. In addition, understanding the

Sustainable Production, Instrumentation and Engineering Sciences

process of getting a plaintext response from a da-
tabase can be useful for anyone interested in the
underlying mechanics of data storage and re-
trieval.

Figure 2 is showing evaluation of the web
framework on its ability to serialize an object into
JSON format and return it as a response to the cli-
ent. The object being serialized consists of a single
key-value pair, with the key "message" and the
value "Hello, World!". The performance of the web
framework is measured based on how efficiently
and quickly it can serialize this object and return it
as a response. This test is designed to assess the
web framework's ability to handle basic JSON seri-
alization tasks and provide fast and reliable re-
sponses to clients.

Json serialization comparation.

may-minihttp |- |
just.js |]
h2ao | \
BeetleX |]

drogon |]

salvo [|

asp.net (core) |
helidon
node.js
comet

spring (boot) [
3

i

django
laravel

¢ 20 40 60 80 100
Percentage [%]

Figure 2. Comparison of J[SON Serialization

It is important to note that the simplicity of the
object being serialized in this test may not accu-
rately reflect the complexity of real-world JSON se-
rialization tasks that web frameworks are ex-
pected to handle. However, this test can still pro-
vide valuable information about the web frame-
work's performance and can be used to compare
the efficiency of different frameworks in handling
basic JSON serialization tasks.

Additionally, the results of this test can be used
to identify any potential bottlenecks or inefficien-
cies in the web framework's JSON serialization
process, which can be addressed and optimized in
future development.

In Figure 3 the test is making a request to the
web framework, which retrieves a single row from
a database table and converts it into a JSON format
for the response. The performance of the web
framework is evaluated based on how efficiently
and quickly it can complete this process. This test
is designed to measure the web framework’s abil-
ity to handle simple database queries and serialize
the resulting data as JSON.

Vol. 4. No. 1(2025)

Single Query comparation.

just.js |
may-minihttp)

salvo ‘

drogon | ‘
asp.net (core) - ‘
h2o |

BeetleX |
heldony

comet
node.js
spring (boot)
django Z|
laravel f]

20 40 60 80 100
Percentage [%]

(=

Figure 3. Schematic shows comparison of single query
request to one database table

To further elaborate, the purpose of this test is
to assess the web framework's performance in
a scenario where it needs to retrieve a single row
of data from a database and return it to the client
in a JSON format. This is a common task that web
frameworks are expected to perform, and so it is
important to evaluate their efficiency and speed at
doing so. The results of this test can be used to
compare the performance of different web frame-
works and identify any strengths or weaknesses in
their handling of simple database queries and
JSON serialization.

In Figure 4 the shown comparison presents a
test of retrieving multiple rows from database and
converting it to JSON format prepared for re-
sponses. This process is used to assess the perfor-
mance of a web framework based on how effi-
ciently and quickly it can execute simple database
queries and convert the retrieved data into a JSON
format. The aim of this test is to evaluate the web
framework's capability to handle this type of task.

Multiple Query comparation.

justjs
may-minihttp
salvo
helidon
drogon
BeetleX
comet

h2o

asp.net (core)
spring (boot)
node.js
laravel
django

0 2‘0 4‘0 GID 8‘0 1(‘)0
Percentage [%]
Figure 4. Comparison of fetching multiple rows from
single database table and serializing of these rows as
a JSON response

In Figure 5, the performance of a framework's
Object-Relational Mapping (ORM) is tested in re-

Sustainable Production, Instrumentation and Engineering Sciences

trieving and manipulating data from a database ta-
ble containing fortune cookie messages. The ORM
is used to fetch all rows from the table, which has
an unknown number of rows, and an additional
fortune cookie message is inserted into the list at
runtime. The list is then sorted by the message text,
and the resulting list is delivered to the client using
aserver-side HTML template. The test ensures that
the message text is properly escaped and treated as
untrusted, and that the UTF-8 fortune messages
are rendered correctly. This information can be
useful in understanding the capabilities and per-
formance of a framework's ORM in retrieving and
manipulating data from a database. It can also be
helpful for developers working with databases and
looking to optimize their code for data retrieval
and manipulation.

Fortunes comparation.

drogon

salvo

justjs
may-minihttp
asp.net (core)
h2o

helidon
comet
BeetleX
node.js
spring (boot)
django
laravel

0 20 40 60 80 100
Percentage [%]

Figure 5. Comparison of fetching a full data table of
Unix random fortune cookies

Figure 6 showed comparison of performance
on updating databases. In this test, the system is
designed to handle incoming requests by perform-
ing multiple databases write operations. Each
request involves the following steps:

1. Fetching multiple rows from a simple data-
base table

Converting the rows to in-memory objects
3. Modifying one attribute of each object in

memory
4. Updating each associated row in the database

individually
5. Serializing the list of objects as a JSON re-
sponse

The test is run multiple times, testing the per-
formance of the system when performing 1, 5, 10,
15, and 20 updates per request. It's important to
note that the number of statements per request is
twice the number of updates, since each update is

Vol. 4. No. 1(2025)

paired with a query to fetch the object. The test is
run at 512 concurrencies, which means that there
are 512 requests being processed simultaneously.
The purpose of this test is to evaluate the system's
ability to handle multiple databases write opera-
tions efficiently.

DB updates comparation.

justjs
may-minihttp
salvo
drogon
BeetleX

h2o

comet
helidon
spring (boot)
asp.net (core)
node.js
laravel
django

0 20 40 60 80 100
Percentage [%]

Figure 6. Comparison of performance on updating
databases

The scores shown in Figure 7 for the perfor-
mance of different web frameworks are calculated
by taking a weighted average of the results of sev-
eral tests. The weights assigned to each test are as
follows: JSON serialization = 1.0, single query =
1.737, multiple queries = 21.745, fortunes = 4.077,
data updates = 68.363, and plaintext = 0.163. These
weights reflect the relative importance of each test
in evaluating the overall performance of the web
frameworks. It is important to understand that the
weights assigned to each test in calculating the
overall performance scores are subjective and may
not necessarily reflect the relative importance of
these tests to all users of the web framework. The
specific needs and priorities of an individual or or-
ganization will determine which aspects of a web
framework's performance are most critical, and
therefore, which tests and weights should be given
more consideration. For example, if an organiza-
tion primarily focuses on developing web applica-
tions that require frequent updates to large
amounts of data, then the "data updates" test and
its corresponding weight of 68.363 would be more
relevant and important in evaluating the overall
performance of the web framework. On the other
hand, if an organization primarily focuses on devel-
oping web applications that primarily serve static
content, then the "plaintext" test and its corre-
sponding weight of 0.163 may be more relevant
and important.

Sustainable Production, Instrumentation and Engineering Sciences

Composite score comparation.

justjs F |
may-minihttp £ |
drogon - |
asp.net (core) [|
salvo | |

BeetieX | |
h2o [|
helidon |
comet [
spring (boot) |
node.js |
laravel [
django :|
0 20 40 60 80 100

Percentage [%]
Figure 7. Comparison of composite scores

In Figure 8, the number of watchers for selected
repositories on GitHub is presented. This data can
be useful in highlighting the level of interest and at-
tention that specific projects are receiving. By dis-
playing the number of watchers, you can provide
insight into the level of engagement and support
for a particular repository. This information can be
helpful for developers looking to contribute to or
use a particular project, as well as for those inter-
ested in understanding the impact and reach of dif-
ferent open-source projects on GitHub. In addition,
the number of watchers can be a good indicator of
the potential size and activity of a repository's
community.

Watchers on github for selected repositories.

4500
4000
3500
e
>
£ 3000
El
S 2500
w
$ 2000
£
Q
= 1500
1000
500

0

Figure 8. Showcase of number of watchers for selected
repositories on GitHub

In Figure 9 the number of forks for selected re-
positories on GitHub is displayed. This infor-
mation can be useful in demonstrating the level of
community engagement and support for a partic-
ular repository. By showing the number of forks,
you can provide insight into the popularity and
adoption of specific projects. This information can
be helpful for developers looking to contribute to

Vol. 4. No. 1(2025)

or use a particular project, as well as for those in-
terested in understanding the impact and reach of
different open-source projects on GitHub.

4 ><10“‘ quks on githyb for sfeleclzteq reposijorifes. ‘

Forks on github
[\S]

Figure 9. Showcase of number of forks for selected
repositories on GitHub

In Figure 10, the number of stars for selected
repositories on GitHub is shown. The data demon-
strates the popularity and recognition of these spe-
cific projects, providing insight into the level of ap-
preciation and support they have received. This in-
formation can be helpful for developers looking to
contribute to or use these projects, as well as for
those interested in understanding the impact and
reach of different open-source projects on GitHub.
The number of stars is often considered a form of
endorsement on GitHub and can be a good indica-
tor of the overall quality and usefulness of a repos-
itory.

10 x10* Stars on github for selected repositories.

Stars on github

Figure 10. Showcase of number of stars for selected
repositories on GitHub

According to insights.stackoverflow.com (Fig-
ure 11), the popularity of programming languages
can vary over time. Some languages, such as Java

Sustainable Production, Instrumentation and Engineering Sciences

and Python, have consistently high levels of popu-
larity and remain near the top of the chart through-
out the plotted time period. Other languages, such
as C++ and Rust, have more variable levels of pop-
ularity and fluctuate more in their ranking on the
chart.

i
14.00% |

|
12.00%

A
- A 7
10.00% - < y/4 AN

8.00% |\ P 7 e

% of Stack Overflow questions that month

2010 2012 2014 2016 2018 2020 2022

Year

Figure 11. Schematic of percentage popularity of
compared languages relative to Stack Overflow
questions in their topic

It's important to note that this plot shows the pop-
ularity of programming languages based on the
number of questions asked about them on Stack
Overflow, which may not necessarily reflect their
overall popularity or usage in the industry. Other
factors, such as the number of job openings or the

Vol 4. No. 1(2025)

amount of code written in a language, could also be
used to measure popularity.

The popularity of web frameworks can be influ-
enced by the popularity of the programming lan-
guage they are written in, but it is not directly tied
to it.

For example, a web framework written in
a popular programming language may have an ad-
vantage in terms of adoption and usage, since de-
velopers who are familiar with the language may
be more likely to use the framework (Table 1). On
the other hand, a web framework written in a less
popular language may have a harder time gaining
traction, even if it is well-designed and functional.

However, the popularity of a web framework is
not solely determined by the popularity of the lan-
guage it is written in. Other factors, such as the ease
of use, performance, and features of the frame-
work, can also play a role in its popularity (Table 2,
3 and 4).

In summary, the popularity of web frameworks
can be influenced by the popularity of the program-
ming language they are written in, but it is not di-
rectly tied to it. Other factors can also play a role in
the popularity of a web framework.

Table 1. Schematic of percentage popularity of compared languages relative to Stack Overflow questions in their topic

drogon [21,877 617,680 5,969,800 29,928 1,086,998 556,046
salvo rust 23,733 631,785 1,928,951 33,700 1,082,630 542,547
just.js javascript 24,454 673,201 6,982,125 34,620 1,526,714 538,414
may-minihttp rust 24,192 642,348 7,023,484 34,493 1,546,221 520,976
asp.net (core) c# 2,696 412,877 5,415,391 16,019 1,058,054 394,144
h2o c 13,338 386,738 3,566,050 19,026 1,495,931 391,802
helidon java 7,225 271,734 506,995 30,368 381,536 227,138
comet php 7,556 230,193 460,879 19, 347 366,200 195,551
BeetleX c# 16,860 373,208 1,082 21,055 1,125,056 144,880
node. js javascript 2,223 113,707 607,368 6,498 376,679 88,243
spring (boot) java 7,128 106,783 185,720 15,763 139,448 22,478
django python 754 19,402 79,188 1,396 73,479 15,038
laravel php 1,611 9,366 15,012 3,267 14,926 8,437

Table 2. Content presents values calculated based on the weighted multiplicators that financial trading platform

developer framework prefers

just.js javascript 122,270 3,366,005 13,964,250 103,860 3,053,428 538,414 21,148,227
may-minihttp rust 120,960 3,211,740 14,046,968 103,479 3,092,442 520,976 21,096,565
drogon cH+ 109,385 3,088,400 11,939,600 89,784 2,173,996 556,046 17,957,211
asp.net (core) c# 13,480 2,064,385 10,830,782 48,057 2,116,108 394,144 15,466,956
h2o c 66,690 1,933,690 7,132,100 57,078 2,991,862 391,802 12,573,222
salvo rust 118,665 3,158,925 3,857,902 101,100 2,165,260 542,547 9,944,399
BeetleX c# 84,300 1,866,040 2,164 63,165 2,250,112 144,880 4,410,661
helidon java 36,125 1,358,670 1,013,990 91,104 763,072 227,138 3,498,099
comet php 37,780 1,158,965 921,758 58,041 732,400 195,551 3,096,495
node. js javascript 11,115 568,535 1,214,736 19,494 753,358 80,243 2,647,481
spring (boot) java 35,640 533,915 371,440 47,289 278,896 22,478 1,289,658
django python 3,770 97,010 158,376 4,188 146,958 15,038 425,340
laravel php 8,055 46,830 30,024 9,801 29,852 8,437 132,999

Sustainable Production, Instrumentation and Engineering Sciences

Vol. 4. No. 1(2025)

Table 3. Content presents values calculated based on the weighted multiplicators that financial trading platform

developer framework prefers

Single
Framework Language Updates ng ry
may-minihttp rust 120,960 1,927,044
just.js javascript 122,276 2,019,603
drogon C++ 109,385 1,853,040
asp.net (core) C# 13,480 1,238,631
h2o c 66,690 1,160,214
salvo rust 118,665 1,895,355
BeetleX c# 84,300 1,119,624
helidon java 36,125 815,202
comet php 37,780 690,579
node.js javascript 11,115 341,121
spring (boot) java 35,640 320,349
django python 3,770 58,206
laravel php 8,055 28,098

Multiple Json

Plaintext Gt T e T Fortunes Score
14,046,968 172,465 7,731,105 520,976 24,519,518
13,964,250 173,100 7,633,570 538,414 24,451,207
11,939,660 149,640 5,434,990 556,046 20,042,701
10,830,782 80,095 5,290,270 394,144 17,847,402

7,132,100 95,130 7,479,655 391,802 16,325,591

3,857,902 168,500 5,413,150 542,547 11,996,119

2,164 105,275 5,625,280 144,880 7,081,523
1,013,990 151,848 1,907,680 227,138 4,151,975
921,758 96,735 1,831,000 195,551 3,773,403
1,214,736 32,490 1,883,395 80,243 3,563,100
371,440 78,815 697,240 22,478 1,525,962
158,376 6,980 367,395 15,038 609,765
30,024 16,335 74,630 8,437 165,579

Table 4. Content presents values calculated based on the weighted multiplicators that news webpage developer

framework prefers
Framework Language Updates Sé:g:; Plaintext Mu;lil::; serializaz:: Fortunes Score
just.js javascript 48,384 3,211,740 35,117,420 68,986 3,092,442 2,604,880 44,143,852
may-minihttp rust 48,908 3,366,005 34,910,625 69,240 3,053,428 2,692,070 44,140,276
drogon CH+ 43,754 3,088,400 29,849,000 59,856 2,173,996 2,780,230 37,995,236
asp.net (core) c# 5,392 2,064,385 27,076,955 32,038 2,116,108 1,970,720 33,265,598
h2o c 26,676 1,933,690 17,830,250 38,052 2,991,862 1,959,010 24,779,540
salvo rust 47,466 3,158,925 9,644,755 67,400 2,165,260 2,712,735 17,796,541
helidon java 14,450 1,358,670 2,534,975 60,736 763,072 1,135,690 5,867,593
comet php 15,112 1,158,965 2,304,395 38,694 732,400 977,755 5,219,321
BeetleX c# 33,720 1,866,040 5,410 42,110 2,250,112 724,400 4,921,792
node.js javascript 4,446 568,535 3,036,840 12,996 753,358 401,215 4,777,390
spring (boot) java 14,256 533,915 928,600 31,526 278,896 112,390 1,899,583
django python 1,508 97,010 395,940 2,792 146,958 75,190 719,398
laravel php 3,222 46,830 75,060 6,534 29,852 42,185 203,683
Defined developer types: Composite score for example 1.
1. A developer working on a real-time financial Justjs
. . . . may-minihttp
trading platform will likely focus on the Single Hogan
Query test, as the platform needs to quickly re- asp.net (core)
. P . . . h2o
spond to individual queries. This developer will cafiro
likely use in-memory databases and other perfor- BeetleX
mance optimization techniques to minimize re- he"d(’:
come
sponse time and improve overall system perfor- node.js
mance. spring (boot)
i django
Assigned Values: aravel

e DBupdates: 5

e Single Query: 5

¢ Plaintext Response: 2
e Multiple Query: 3

e Json Serialization: 2
e Fortunes: 1

20 40 60

Percentage [%)]

80 100

Composite scores calculated based on the weighted
multiplicators that financial trading platform developer
framework prefers

2. A developer working on an e-commerce plat-
form will likely focus on the Multiple Query test,
JSON Serialization test and Data Update test. The
platform needs to process and return large
amounts of data in JSON format, handle multiple
queries at the same time and perform frequent up-
dates to the product catalog. They may use docu-
ment-based databases, pagination, asynchronous
processing and efficient libraries for serialization
and data updates.

Assigned Values:

Sustainable Production, Instrumentation and Engineering Sciences

e DBupdates: 5

e Single Query: 3

¢ Plaintext Response: 2
e Multiple Query: 5

e Json Serialization: 5

e Fortunes: 1
Composite score for example 2.

may-minihttp
jusl.js
drogon
asp.net (core)
h2o

salvo
BeetleX
helidon
comet
node.js
spring (boot)
django
laravel

0 20 40 60 80 100
Percentage [%]

Composite scores calculated based on the weighted
multiplicators that e-commerce developer framework
preferes

3. A developer working on a web-based news web-
site will likely focus on the Single Query test and
Fortunes test, as the website needs to quickly re-
spond to requests for cached content and display
large amounts of data in a tabular format. This de-
veloper will likely use caching mechanisms, Con-
tent Delivery Network (CDN) and efficient libraries
for displaying data in tables to improve perfor-
mance and scalability of the website.

Assigned Values:

e DB updates: 2

e Single Query: 5

¢ Plaintext Response: 5

e Multiple Query: 2

e Json Serialization: 2

e Fortunes: 5

Composite score for example 3.

justjs
may-minihttp
drogon
asp.net (core)
h2o

salvo

helidon
BeetleX
comet
node.js
spring (boot)
django
laravel

0 20 40 60 80 100
Percentage [%]
Composite scores calculated based on the weighted
multiplicators that news webpage developer
framework prefers

Vol. 4. No. 1(2025)

6. CONCLUSIONS

According to the benchmark tests that were
conducted, different types of developers may find
different frameworks to be the best fit for their
needs. For real time financial trading platforms,
Just,js is the recommended framework. This is be-
cause it provides exceptional performance on the
Single Query test, which is crucial for this type of
application. Additionally, Just,js is lightweight and
easy to set up, making it a great option for high-
performance, low-latency applications.

On the other hand, e-commerce platforms may
benefit from using May-minihttp as their frame-
work of choice. This is because it offers excellent
performance on the Multiple Query test, JSON se-
rialization test, and Data update test, which are the
most important for this type of application. Fur-
thermore, May-minihttp has good scalability, mak-
ing it ideal for large-scale ecommerce platforms.

For web-based news websites, Just.js is again
the recommended framework. It offers excellent
performance on the Fortunes test, which is critical
for this type of application. Additionally, Just,s is
lightweight and easy to use, making it a great
choice for high-performance, low-latency applica-
tions.

It is important to note that these results are
based on the specific set of tests and configura-
tions that were used. The best framework for
a particular application will depend on various
factors such as the specific requirements of the ap-
plication, the development team's expertise, and
available resources. Therefore, it is recommended
to evaluate other factors before making a decision
on which framework to use.

Additionally, it is important to consider the
level of support and documentation available for
the framework. A framework with a large and ac-
tive community, as well as comprehensive docu-
mentation, can make development and trouble-
shooting much easier. Furthermore, looking into
the framework's compatibility with other technol-
ogies and tools that you plan to use in your project
can also be a crucial factor. For example, if you
plan to use a specific database management sys-
tem, it is important to ensure that the framework
has good support for it.

Another important consideration is the frame-
work's ability to handle security and data protec-
tion. It is important to ensure that the framework
has built-in security features and that it is up-to-
date with the latest security standards. This can

Sustainable Production, Instrumentation and Engineering Sciences

help to minimize the risk of data breaches and
other security issues.

Finally, it is also worth evaluating the frame-
work's ability to handle and manage resources,
such as memory and CPU usage. A framework that
is efficient in managing resources can help to min-
imize the risk of performance bottlenecks and
crashes.

In conclusion, while the benchmark tests re-
sults can give a good idea of the performance of dif-
ferent frameworks, it is important to also consider
other factors such as support and documentation,
compatibility, security, and resource management
before making a decision on which framework to
use. It is also important to keep in mind that the
best framework for a particular application will de-
pend on the specific requirements and constraints
of the project and development team.

REFERENCES
(1]

Laaziri M., Benmoussa K., Khoulji S., and Kerkeb
M.L.: A Comparative study of PHP frameworks per-
formance, Procedia Manuf, vol. 32,2019, pp. 864-
871, 2019, doi: 10.1016/].PROMFG.2019.02.295,
Dwarampudi V., Dhillon S.S,, Shah J., Sebastian N.J.,
and Kanigicharla N.S.: Comparative study of the
Pros and Cons of Programming languages Java,
Scala, C++, Haskell, VB .NET, Aspect], Perl, Ruby,
PHP & Scheme - a Team 11 COMP6411-S10 Term
Report, doi: 10.48550/arXiv.1008.3431,
Prokofyeva N., and V. Boltunova V.: Analysis and
Practical Application of PHP Frameworks in Devel-
opment of Web Information Systems, Procedia
Comput Sci, vol. 104, 2017, pp. 51-56, doi:
10.1016/].PROCS.2017.01.059,

Ghaemmaghami S.S.S., Emam S.S., and Miller J.: Au-
tomatically inferring user behavior models in
largescale web applications, Inf Softw Technol, vol.
141, 2022, p. 106704, doi:
10.1016/].INFSOF.2021.106704,

TechEmpower: TechEmpower Framework Bench-
marks Round 21, TechEmpower, 19-Jul-2022,
[Online], Available: https://www.techem-
power.com/benchmarks/#section=datar21, [Ac-
cessed: 11-Dec-2022],

Johnston A, and Huntley G.: Just-JS/just: 4 very

(2]

(3]

[4]

small V8 JavaScript runtime for Linux only, GitHub,
090ct2020, [Online], Available:
https://github.com/just-js/just, [Accessed: 11-
Dec-2022],

10

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Vol 4. No. 1(2025)

Beetlex-lo: Beetlex-10/BeetleX: High performance
dotnet core socket TCP communication compo-
nents, support TLS, HTTP, HTTPS, WebSocket, RPC,
Redis protocols, custom protocols and 1M Connec-
tions Problem Solution, GitHub, 21-Feb-2020,
[Online], Available: https://github.com/beetlex-
io/BeetleX, [Accessed: 11- Dec2022],

Dotnet: Dotnet/ASPNETCORE: ASP.NET core is a
cross-platform .NET framework for building mod-
ern cloudbased web applications on Windows, Mac,
or Linux, GitHub, 08-Jul-2014, [Online], Available:
https://github.com/dotnet/aspnetcore, [Ac-
cessed: 11-Dec2022],

DrogonFramework: Drogonframework/Drogon:
Drogon: A C++14/17/20 based HTTP Web Applica-
tion Framework Running on Linux/Ma-
c0S/Unix/Windows, GitHub, 11-Jun-2019,
[Online], Available: https://github.com/drogon-
framework/drogon. [Accessed: 11Dec-2022],
h2o0: H20/H20: H20 - the optimized HTTP/1,
HTTP/2, HTTP/3 server, GitHub, 18-Feb-2015,
[Online], Available: https://github.com/h20/h2o,
[Accessed: 11-Dec2022],

Helidon-lo: Helidon-10/Helidon: Java libraries for
writing microservices, GitHub, 15-Sep-2018,
[Online], Available: https://github.com/helidon-
io/helidon, [Accessed: 11-Dec-2022],

Laravel: Laravel/Laravel: Laravel is a web applica-
tion framework with expressive, elegant syntax.
we've already laid the foundation for your next big
idea - freeing you to create without sweating the
small things, GitHub, 14-May2017, [Online], Avail-
able: https://github.com/laravel/laravel, [Ac-
cessed: 11-Dec-2022],

Nodejs: Nodejs/node: Node.js JavaScript runtime,
GitHub, 05-Sep-2017, [Online], Available:
https://github.com/nodejs/node, [Accessed: 11-
Dec-2022],

Gotsuliak S.,, and Anewenah W.: Gotzmann/Comet:
Modern PHP framework for Building Blazing Fast
Rest APIs and microservices, GitHub, 08-May-2020.
[Online]. Available: https://github.com/got-
zmann/comet. [Accessed: 11-Dec-2022].
Spring-Projects: Spring-projects/spring-boot:
Spring boot, GitHub, 09-May-2018, [Online], Avail-
able: https://github.com/spring-projects/spring-
boot, [Accessed: 11-Dec-2022],

Django: Django/Django: The web framework for
perfectionists with deadlines, GitHub, 03-Nov-
2005, [Online], Available:
https://github.com/django/django, [Accessed:
11-Dec-2022],

Sustainable Production, Instrumentation and Engineering Sciences

[17]

[18]

[19]

Salvo-Rs: Salvo-rs/salvo: Salvo is a powerful and
simplest web server framework in Rust World,
GitHub, 11Apr2022, [Online], Available:
https://github.com/salvors/salvo, [Accessed: 11-
Dec-2022],

Huang X.: Xudong-Huang/MAY_MINIHTTP: Mini
HTTP implemented on top of May, GitHub, 16-]Jan-
2018. [Online], Available: https://github.com/Xu-
dongHuang/may_minihttp, [Accessed: 11-Dec-
2022],

Stack Overflow: Stack Overflow Most Popular Lan-
guages, Stack Overflow Insights, 11-Dec-2022,
[Online], Available: https://insights.stackover-
flow.com/trends, [Accessed: 11Dec-2022].

11

Vol. 4. No. 1(2025)

